Part-of-speech tagging revisited

A simple but useful form of linguistic analysis

Christopher Manning
Sources of information

• What are the main sources of information for POS tagging?
 • Knowledge of neighboring words
 • Bill saw that man yesterday
 • NNP NN DT NN NN
 • VB VB(D) IN VB NN
 • Knowledge of word probabilities
 • *man* is rarely used as a verb....

• The latter proves the most useful, but the former also helps
More and Better Features ➔ Feature-based tagger

• Can do surprisingly well just looking at a word by itself:
 • Word the: the → DT
 • Lowercased word Importantly: importantly → RB
 • Prefixes unfathomable: un- → JJ
 • Suffixes Importantly: -ly → RB
 • Capitalization Meridian: CAP → NNP
 • Word shapes 35-year: d-x → JJ

• Then build a maxent (or whatever) model to predict tag
 • Maxent P(t|w): 93.7% overall / 82.6% unknown
Overview: POS Tagging Accuracies

- **Rough accuracies:**
 - Most freq tag:
 - Roughly 90% / 50%
 - Trigram HMM:
 - ~95% / ~55%
 - Maxent $P(t|w)$:
 - 93.7% / 82.6%
 - TnT (HMM++):
 - 96.2% / 86.0%
 - MEMM tagger:
 - 96.9% / 86.9%
 - Bidirectional dependencies:
 - 97.2% / 90.0%
 - Upper bound:
 - ~98% (human agreement)

Most errors on unknown words.
How to improve supervised results?

• Build better features!

 RB
 PRP VBD IN RB IN PRP VBD .
 They left as soon as he arrived .

• We could fix this with a feature that looked at the next word

 JJ
 NNP NNS VBD VBN .
 Intrinsic flaws remained undetected .

• We could fix this by linking capitalized words to their lowercase versions
Using words only in a straight classifier works as well as a basic (HMM or discriminative) sequence model!!
Summary of POS Tagging

For tagging, the change from generative to discriminative model does not by itself result in great improvement.

One profits from models for specifying dependence on overlapping features of the observation such as spelling, suffix analysis, etc.

An MEMM allows integration of rich features of the observations, but can suffer strongly from assuming independence from following observations; this effect can be relieved by adding dependence on following words.

This additional power (of the MEMM, CRF, Perceptron models) has been shown to result in improvements in accuracy.

The higher accuracy of discriminative models comes at the price of much slower training.
Part-of-speech tagging revisited

A simple but useful form of linguistic analysis

Christopher Manning